Integrating AI Capabilities in Spring Boot Applications

Master Spring Ter
3 min readJun 16, 2024

Artificial Intelligence (AI) is revolutionizing many industries by enabling smarter, more efficient, and innovative solutions. Integrating AI capabilities into your Spring Boot application can enhance its functionality, providing features such as natural language processing, image recognition, predictive analytics, and more. This article will explore how to integrate AI into a Spring Boot application using various AI services and libraries.

Setting Up the Project

Create a new Spring Boot project using Spring Initializr with the following dependencies:

  • Spring Web
  • Spring Boot Actuator (optional, for monitoring)
  • Spring Data JPA (optional, for database operations)
  • OpenAI API or TensorFlow (for AI capabilities)

Adding Dependencies

Add the necessary dependencies to your pom.xml (for Maven) or build.gradle (for Gradle) file.

pom.xml:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>com.openai</groupId>
<artifactId>openai-api</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.tensorflow</groupId>
<artifactId>tensorflow</artifactId>
<version>2.6.0</version>
</dependency>

build.gradle:

dependencies {
implementation 'org.springframework.boot:spring-boot-starter-web'
implementation 'org.springframework.boot:spring-boot-starter-actuator'
implementation 'com.openai:openai-api:1.0.0'
implementation 'org.tensorflow:tensorflow:2.6.0'
}

Integrating OpenAI API

The OpenAI API can be used to integrate powerful AI capabilities such as natural language processing into your Spring Boot application.

Step 1: Configure OpenAI API Key

Set your OpenAI API key in your application.properties file.

application.properties:

openai.api.key=YOUR_API_KEY

Step 2: Create a Service to Interact with OpenAI

Create a service to handle requests to the OpenAI API.

OpenAIService.java:

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import com.openai.api.OpenAIApi;
import com.openai.api.models.CompletionRequest;
import com.openai.api.models.CompletionResponse;

@Service
public class OpenAIService {

@Value("${openai.api.key}")
private String apiKey;

public String getCompletion(String prompt) {
OpenAIApi api = new OpenAIApi(apiKey);
CompletionRequest request = CompletionRequest.builder()
.prompt(prompt)
.maxTokens(150)
.build();
CompletionResponse response = api.createCompletion(request);
return response.getChoices().get(0).getText();
}
}

Step 3: Create a Controller to Handle Requests

Create a REST controller to expose an endpoint for interacting with the OpenAI API.

AIController.java:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class AIController {

@Autowired
private OpenAIService openAIService;

@GetMapping("/complete")
public String getCompletion(@RequestParam String prompt) {
return openAIService.getCompletion(prompt);
}
}

Integrating TensorFlow

TensorFlow can be used for various AI tasks such as image recognition, predictive analytics, and more.

Step 1: Load and Use a TensorFlow Model

Create a service to load and use a TensorFlow model.

TensorFlowService.java:

import org.springframework.stereotype.Service;
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;

@Service
public class TensorFlowService {

public float[] predict(float[] input) {
try (Graph graph = new Graph()) {
// Load the pre-trained model (assume the model is in the resources folder)
byte[] graphDef = Files.readAllBytes(Paths.get("src/main/resources/model.pb"));
graph.importGraphDef(graphDef);

try (Session session = new Session(graph);
Tensor<Float> inputTensor = Tensor.create(input, Float.class)) {

Tensor<Float> result = session.runner()
.feed("input", inputTensor)
.fetch("output")
.run()
.get(0)
.expect(Float.class);

float[] output = new float[(int) result.shape()[0]];
result.copyTo(output);
return output;
}
} catch (IOException e) {
throw new RuntimeException("Failed to load model", e);
}
}
}

Step 2: Create a Controller to Handle Predictions

Create a REST controller to expose an endpoint for making predictions with the TensorFlow model.

PredictionController.java:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class PredictionController {

@Autowired
private TensorFlowService tensorFlowService;

@GetMapping("/predict")
public float[] predict(@RequestParam float[] input) {
return tensorFlowService.predict(input);
}
}

Running the Application

Create the main application class and run the application.

DemoApplication.java:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
}
}

Start your Spring Boot application and test the AI endpoints. For the OpenAI completion endpoint, you can use:

curl -X GET "http://localhost:8080/complete?prompt=Hello%20world"

For the TensorFlow prediction endpoint, you can use:

curl -X GET "http://localhost:8080/predict?input=1.0,2.0,3.0"

Conclusion

Integrating AI capabilities into your Spring Boot applications can greatly enhance their functionality and provide advanced features like natural language processing, image recognition, and predictive analytics. By leveraging APIs like OpenAI and libraries like TensorFlow, you can build intelligent applications that can handle complex tasks and provide valuable insights.

Explore further integrations and enhancements to fully utilize AI in your applications. Happy coding!

This tutorial was generated using ChatGPT, specifically the Master Spring TER model. For more information, visit ChatGPT Master Spring TER.

Sign up to discover human stories that deepen your understanding of the world.

Free

Distraction-free reading. No ads.

Organize your knowledge with lists and highlights.

Tell your story. Find your audience.

Membership

Read member-only stories

Support writers you read most

Earn money for your writing

Listen to audio narrations

Read offline with the Medium app

Master Spring Ter
Master Spring Ter

Written by Master Spring Ter

https://chatgpt.com/g/g-dHq8Bxx92-master-spring-ter Specialized ChatGPT expert in Spring Boot, offering insights and guidance for developers.

No responses yet

Write a response